Mathematics

 Paper 3 (Calculator)

 Paper 3 (Calculator)}

Higher Tier

Churchill Paper 3E - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence
175% of $70 \%=0.75 \times 0.7=0.525=52.5 \%$
$100-70=30 \%$ of animals are not dogs
40% of $30 \%=0.4 \times 0.3=0.12=12 \%$
$\%$ of all that come back within 1 month $=52.5+12=64.5 \%$
55.5\%
64.5\%
65.5\%
67.5\%

B1
Total 1

2 e.g.

$y=5 \quad x=-3$
$y=2 x-5 \quad y=-3 x+1$
B1 Total 1

3 (a) $225+110+270+85=690$
$690 \div 30=23 \mathrm{~g}$
$15 \mathrm{~g} \quad 17 \mathrm{~g}$
19g
23g
B1
(b) $\frac{180}{270}=\frac{2}{3}$
$\frac{2}{3}$ of $30=20$ cookies

15
18
20
24
B1
(c) To make 30 costs:

$$
\begin{aligned}
\frac{225}{250} & \times 85+\frac{110}{2000} \times 245+\frac{270}{1500} \times 100+\frac{85}{100} \times 80 \\
= & 76.6+13.475+18+68 \\
& 175.975 p
\end{aligned}
$$

4 First rectangle: \quad Height $=6+4=10 \mathrm{~cm}$

$$
\text { Width }=2 \times 6=12 \mathrm{~cm}
$$

Second rectangle:

$$
\text { Perimeter }=2 \times(10+12)=2 \times 22=44 \mathrm{~cm}
$$

Height $=6 \mathrm{~cm}$
Width $=5 \times 4=20 \mathrm{~cm}$
Perimeter $=2 \times(6+20)=2 \times 26=52 \mathrm{~cm}$
Increase in perimeter $=52-44=8 \mathrm{~cm}$
$\%$ increase $=\frac{8}{44} \times 100 \%=18.18 \ldots \%$
The perimeter increases by 18.2% (3sf)

A1 Total 3

$6 \quad 1 \mathrm{~m}^{2}=100 \times 100=10000 \mathrm{~cm}^{2}$
$20 \mathrm{~cm}^{2}=20 \div 10000 \mathrm{~m}^{2}=0.002 \mathrm{~m}^{2}$
$0.2 \mathrm{~m}^{2}$
$0.02 \mathrm{~m}^{2}$
$0.002 \mathrm{~m}^{2} \quad 0.0002 \mathrm{~m}^{2}$
B1 Total 1

7 e.g.

	Year 10	Year 11	Total
Boys		13	37
Girls			
Total		33	75

Leading to
Year 10
Year 11

$$
P(\mathrm{Yr} 10 \text { girl })=\frac{18}{75} \quad\left[=\frac{6}{25}\right]
$$

A1 Total 3

8
(a) $£ 8800$
(b)

Gradient $\approx \frac{4600-8800}{25-0}=-168$
M1 A1
(c) e.g. That the charity spent $£ 168$ per day from the marketing fund

9 Let Ayyub have x eggs
Bran has $(x+1)$ eggs
Curtis has $1.5(x+1)$ eggs
So,

$$
\begin{aligned}
& x+(x+1)+1.5(x+1)=48 \\
& 3.5 x+2.5=48 \\
& 3.5 x=45.5 \\
& 7 x=91 \\
& x=13
\end{aligned}
$$

Curtis has $1.5(13+1)=1.5 \times 14=21$ eggs
He must end up with $48 \div 3=16$ eggs
B1
Curtis gives away 5 eggs
A1
Total 4

10 Common ratio $=0.5$
$5^{\text {th }}=2 \div 2=1, \quad 6^{\text {th }}=1 \div 2=0.5$,
$7^{\text {th }}=0.5 \div 2=0.25, \quad 8^{\text {th }}=0.25 \div 2=0.125$
0.25
0.125
0.0625
0.0001
B1
Total 1
$11 \frac{x^{2}-6 x+9}{2 x-6}=\frac{(x-3)^{2}}{2(x-3)}=\frac{x-3}{2}$
$\frac{x^{2}+9}{2}$
$x^{2}-8 x+15$
$\frac{x-15}{2}$

B1 Total 1

12 (a) e.g. The median of 5 numbers will be the 3rd one when they are arranged in order of size so it will be one of the numbers.
As all the numbers are odd, the median will be odd.
(b) e.g. No. For example, if we have $2,4,6,8,12$, the total of the numbers is 32 and the mean is $32 \div 5=6.4$ which is not an even number.

13 (a) $\quad x=\frac{x+10}{\not x+4}$
e.g. He has cancelled the x on top with the one on the bottom This is wrong because neither x is a factor, you cannot subtract something from top and bottom of a fraction without changing it
(b) In multiplying out the bracket she hasn't multiplied the x by the 4
(c) $x^{2}+4 x=x+10$
$x^{2}+3 x-10=0$
$(x+5)(x-2)=0$
M1
$x=-5$ or 2 A1
Total 6

14 (a) e.g. 7 is a prime number
When $p=7,2 p+1=15 \quad$ M1
$15=3 \times 5$ so 15 is not prime, hence Faruq is not correct A1
[There are many other values of p that can be used.]
(b) e.g. 2 is the only even prime number

As p and q are both greater than 2 they must be odd B1
$p q$ will be odd \times odd giving an odd answer
$p q+1$ will be odd +1 giving an even answer M1
$p q+1$ is greater than 2 so the answer cannot be prime A1
Total 5

15 Area of triangle $A B C=\frac{1}{2} \times 7.5 \times 4=15 \mathrm{~cm}^{2} \quad \mathrm{~B} 1$
Pythagoras': $\quad A C^{2}=7.5^{2}+4^{2} \quad$ M1

$$
=56.25+16=72.25
$$

$$
A C=\sqrt{72.25}=8.5 \mathrm{~cm}
$$

Similarity: $\quad \frac{D C}{8.5}=\frac{7.5}{4}$

$$
D C=\frac{8.5 \times 7.5}{4}=15.9375 \mathrm{~cm}
$$

Area of triangle $A C D=\frac{1}{2} \times 8.5 \times 15.9375=67.73 \ldots \mathrm{~cm}^{2}$
Area of quadrilateral $A B C D=15+67.73 \ldots=82.7 \mathrm{~cm}^{2}(3 \mathrm{sf})$
$16-1 \leq \sin x \leq 1$
$-3 \leq 3 \sin x \leq 3$
$5 \leq 8-3 \sin x \leq 11$
$\begin{array}{lll}3 & 5 & 8\end{array}$
11
B1
Total 1

17 (a) e.g. After 1 minute, 20\% of the original amount is lost.
After another minute, 20% of the new, smaller amount is lost which is less than 20% of the original amount. Hence, after 5 minutes they haven't lost $100 \%(5 \times 20 \%)$ of the original.
(b) When reduced by $20 \%, 80 \%$ or 0.8 is left After 1 minute, amount left is $0.8 \times £ 8000$ ($=£ 6400$)
After 2 full minutes, amount left $=0.8 \times 0.8 \times £ 8000=£ 5120$
A1 Total 3

18 (a)

Time ≈ 144 seconds
B1
(b) Speed = gradient of tangent

At 800 m , speed $\approx \frac{880-680}{174-96}=2.56 \ldots \mathrm{~m} / \mathrm{s}$
At 400 m , speed $\approx \frac{740-0}{114-12}=7.25 \ldots \mathrm{~m} / \mathrm{s}$
$7.25 \div 2=3.6 \ldots$
Speed at end is less than half speed at halfway point Gill is correct
(a)

(b)

20 (a) $T \propto m^{2}$
$T=k m^{2}$
When $m=2, T=15$ so $\quad 15=k \times 2^{2}=4 k \quad$ M1
Hence, $T=3.75 m^{2}$
When $m=6$

$T=3.75 \times 6^{2}$	M1
$T=3.75 \times 36=135$ as required	A1

(b) e.g. If m increases by 4 again we have $m=10$
$\begin{array}{ll}\text { When } m=10 & T=3.75 \times 10^{2} \\ T=3.75 \times 100=375\end{array}$
However, $135+120=255$ so T has not increased by $120 \quad$ A1
Total 5

21
(a) Will's: $\quad x_{1}=2.7071 \ldots \quad$ Grace's: $\quad x_{1}=2.3268 \ldots \quad$ M1

$$
\begin{array}{ll}
x_{2}=2.0853 \ldots & x_{2}=2.3506 \ldots \\
x_{3}=2.6106 \ldots & x_{3}=2.3522 \ldots \\
x_{4}=2.1511 \ldots & x_{4}=2.3523 \ldots \\
x_{5}=2.5413 \ldots & x_{5}=2.3523 \ldots
\end{array}
$$

Grace's process as it converges much more quickly
(b) Using Grace's process:

$$
\begin{aligned}
& x_{4}=2.352384 \ldots \\
& x_{5}=2.352392 \ldots \\
& x_{6}=2.352392 \ldots
\end{aligned}
$$

$x=2.3524(4 \mathrm{dp})$

22 Density $=\frac{\text { mass }}{\text { volume }}$

$$
\begin{align*}
& 3=\frac{400}{\text { volume }} \tag{M1}\\
& \text { Volume }=\frac{400}{3}=133.3 \ldots \mathrm{~cm}^{3} \tag{M1}
\end{align*}
$$

Hence $\quad \frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{400}{3}$

$$
r^{3}=\frac{200}{\pi}
$$

$$
\begin{equation*}
r=\sqrt[3]{\frac{200}{\pi}}=3.9929 \ldots \mathrm{~cm} \tag{M1}
\end{equation*}
$$

Box measures $2 r$ by $2 r$ by r
Volume of box $=7.99 \times 7.99 \times 3.99$

$$
=254.6 \ldots=255 \mathrm{~cm}^{3}(3 \mathrm{sf})
$$

A1
Total 4

23 (a) $1^{\text {st }}$ tablet can be any type (so probability $=1$)
After $1^{\text {st }}$ tablet, there are 3 left of that type and 4 each of other types
$\mathrm{P}\left(2^{\text {nd }}\right.$ tablet is different type $)=\frac{8}{11}$
After $2^{\text {nd }}$ tablet, and given $1^{\text {st }}$ and $2^{\text {nd }}$ were different, there are 3 left of each type that she's had already and 4 left of the third type
$P\left(3^{\text {rd }}\right.$ tablet is different type from $1^{\text {st }}$ and $\left.2^{\text {nd }}\right)=\frac{4}{10}$
$P($ one of each type $)=1 \times \frac{8}{11} \times \frac{4}{10}=\frac{32}{110} \quad\left[=\frac{16}{55}\right]$
M1 A1
(b) e.g. I have assumed that each type of tablet is equally likely to come out

24 (a) $\overrightarrow{A B}=\overrightarrow{O C}=4 q$

$$
\begin{aligned}
& \overrightarrow{M B}=\frac{3}{4} \overrightarrow{A B}=3 \mathbf{q} \\
& \overrightarrow{C B}=\overrightarrow{O A}=2 \mathbf{p} \\
& \overrightarrow{N B}=\frac{1}{2} \overrightarrow{O A}=\mathbf{p} \\
& \begin{aligned}
\overrightarrow{M N} & =\overrightarrow{M B}+\overrightarrow{B N}
\end{aligned} \\
& \quad=\overrightarrow{M B}-\overrightarrow{N B} \\
& \\
& \\
& =3 \mathbf{q}-\mathbf{p} \quad \text { or } \quad-\mathbf{p}+3 \mathbf{q}
\end{aligned}
$$

(b) $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=2 p+4 q$

$$
\begin{aligned}
\overrightarrow{A M} & =\frac{1}{4} \overrightarrow{A B}=\mathbf{q} \\
\overrightarrow{M P} & =\frac{3}{5} \overrightarrow{M N}=\frac{3}{5}(-\mathbf{p}+3 \mathbf{q})=-\frac{3}{5} \mathbf{p}+\frac{9}{5} \mathbf{q} \\
\overrightarrow{O P} & =\overrightarrow{O A}+\overrightarrow{A M}+\overrightarrow{M P} \\
& =2 \mathbf{p}+\mathbf{q}+\left(-\frac{3}{5} \mathbf{p}+\frac{9}{5} \mathbf{q}\right) \\
& =\frac{7}{5} \mathbf{p}+\frac{14}{5} \mathbf{q} \\
& =\frac{7}{5}(\mathbf{p}+2 \mathbf{q}) \\
& =\frac{7}{10}(2 \mathbf{p}+4 \mathbf{q})=\frac{7}{10} \overrightarrow{O B}
\end{aligned}
$$M1

M1

So P is $\frac{7}{10}$ of the way from O to B and therefore lies on $O B$
Dinesh is correct
A1 Total 6

TOTAL FOR PAPER: 80 MARKS

