For \mathbf{AQA}

Mathematics

Paper 2 (Calculator)

Higher Tier

Churchill Paper 2E – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Churchill Maths

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

© Churchill Maths Limited Licensed to Penrice Academy

Churchill Paper 2E Marking Guide – AQA Higher Tier

1	(a) $180 - 2 \times 31 = 180 - 62 = 118^{\circ}$ $a = 360 - 118 = 242^{\circ}$							
		62°	118º	222°	1	(242°)	B1	
	(b)	External a External a b = 45 + 6	ngle of regundle of regundle of regundle of regundle $0 = 105^{\circ}$	ular octa ular hexa	taę xa	gon = 360 ÷ 8 = 45° agon = 360 ÷ 6 = 60°		
		95° (105°	111º	1	115°	B1	Total 2
2	(2 <i>p</i>	$(\mu^{3})^{2} = 2^{2} \times (\mu^{3})^{2}$	$(p^3)^2 = 4p^6$					
	2 p ⁶	4 <i>p</i> ⁵	(4p ⁶	>		32p ⁵	B1	Total 1
3	$\sqrt{0.8}$ $\sqrt{0.8}$ $\frac{10}{12} =$	58 = 0.7615 59 = 0.7681 = 0.7692	5 I					
	$\frac{13}{17} =$	= 0.7647						
	$\frac{17}{22}$ =	= 0.7727						
	$\frac{35}{46}$ =	= 0.7608						
	<u>10</u> 13	$\underbrace{\frac{13}{17}}$	$\frac{17}{22}$ $\frac{3}{4}$	8 <u>5</u> 6			B1	Total 1
4	Kevi 8 po Jam	n's share = rtions = 108 al gets 5 po	3 × 36 = £1 3 so 1 porti rtions = 5 ×	08 on = 10 13.50 =	30 =	8 ÷ 8 = £13.50 : £67.50	M1 M1 A1	Total 3

7	(a)		У 🛦					
			4 Q	M1 A1				
			-6 -4 -2 O 2 4 6 8 x					
	(b)	(3, 3)) and (4, 4)	B1				
	(c)	Rota	tion by 90° clockwise about the point (0, 0)	M2 A1	Total 6			
	A 1.:4							
0	Here	e nas i e:	2p + 2 = 3p - 3	M1				
			2p + 5 = 3p 5 = p	Δ1				
	So, 2	2p + 2	$= 2 \times 5 + 2 = 12$,				
	Eacr Base	n naif c e = 2p	t kite is a right-angled triangle + 2 = 12 cm and perpendicular height = ρ = 5 cm					
	Area	, of hal	If of kite = $\frac{1}{2} \times 5 \times 12 = 30 \text{ cm}^2$	M1				
	Area	of kite	$e = 2 \times 30 = 60 \text{ cm}^2$	A1	Total 4			
9	(a)	The r	The mean B1					
		e.g.						
			as there is no prize of 50p the median cannot be 50p.	B1				
	(b)	e.g.	He has assumed the ball is equally likely to go through					
			each of the gates.	B1				
	(c)	e.g.	To go through the outer gates the ball has to move quite					
			the outer gates and his assumption is not reasonable. B1					
			The outer gates win the bigger prizes so the true mean					
			than the 40p it costs for a roll!)	B1	Total 5			

10	(a)	$= x^{2}$ $= x^{2}$	- <i>x</i> - 5 <i>x</i> + 5 - 6 <i>x</i> + 5		
		(X ² -	$6x + 5 x^2 - 6x - 5 x^2 - 4x + 5 x^2 - 5x + 6$	B1	
	(b)	(<i>x</i> –	1)(x + 10) $(x + 2)(x - 5)$		
		(<i>x</i> –	2)(x - 5) $(x - 2)(x + 5)$	B1	Total 2
11	(a)	≈ –3	.8	B1	
	(b)	x ≈ -	-1, $x \approx 4$	B1	Total 2
12	y =	$\frac{1}{3}(x-x)$	2)		
	For	invers	e, swap x and y: $x = \frac{1}{3}(y - 2)$		
			3x = y - 2 3x + 2 = y		
	<u>3</u> x +	- 2	$3(x+2) \qquad \frac{3}{2-x} \qquad 3x+2$	B1	Total 1
13	4∕ 4 0	0000_=	$= \sqrt[4]{4} \times \sqrt[4]{10000} = \sqrt[4]{4} \times 10$	M1	
	4√4 4√4	$\sqrt{} = \sqrt{}$	$(4) = \sqrt{2}$ = $\sqrt[4]{4} \times 10 = 10 \sqrt{2}$	M1 A1	Total 3
	VIC				
14	(a)	Grad	dient of graph ≈ $\frac{60 - 0}{200 - 0}$ = 0.3	M1	
		So,	height increases at a rate of 0.3 cm per second volume increases at a rate of $0.3 \times 40 \times 50$ = 600 cm ³ per second	M1	
			water is supplied at a rate of 600 ml per second = 600 × 3600 ml per hour = 2160000 ml per hour		
			= 2160 litres per hour	A1	
	(b)	e.g.	I have assumed that the sides of the tank are so thin that they can be ignored. As they will have a thickness, the volume supplied is less	B1	
			so the rate at which the water is supplied will be less meaning that my answer is too big.	B1	Total 5

15	Equ	ate	$3x^{2} - x + 7 = 9 - 6x$ $3x^{2} + 5x - 2 = 0$	M1	
			(3x-1)(x+2) = 0	M1	
			$x = \frac{1}{3}$ or -2	A1	
	Whe	en $x = \frac{1}{3}, y$	r = 7		
	Whe	x = -2, y	/=21	A1	
	So	<i>x</i> = –2, <i>y</i> =	= 21 or $x = \frac{1}{3}, y = 7$		Total 4
16	(a)	e.g. As th conti silve	he density of gold is higher, a certain volume of gold will ribute more to the total mass than the same volume of ar. The % gold will be higher by mass than by volume.	B1	
		•			
	(b)	Let volume	e of gold be x cm ³		
		Mass = de	ensity × volume	N/1	
		Volume of	$silver = (0.6 - x) cm^3$		
		Mass of si	lver = $10.5(0.6 - x)$ grams		
		Total mass	s = 10 grams so:		
			19.3x + 10.5(0.6 - x) = 10	M1	
			$19.3x + 10.5 \times 0.6 - 10.5x = 10$		
			19.3x - 10.5x = 10 - 6.3		
			8.8x = 3.7		
			$x = \frac{5.7}{8.8} = 0.4204$		
		Deverseter	0.0 0.4204		
		Percentag	= 0.6 × 100%	IM1	
			= 70.1% (3sf)	A1	T () C
		Hence abo	out 70% of the volume is gold		lotal 5
17	(a)	Area = $\frac{1}{2}$	× 6 × 8 × sin 30°		
		$=\frac{1}{1}$	$\times 48 \times \frac{1}{2}$		
		- 2 - 12	2^{2} cm ²		
		(12 cm^2)	$12 \sqrt{2} \text{ cm}^2$ $12 \sqrt{3} \text{ cm}^2$ 24 cm^2	B1	
		\smile			
	(b)	e.g. If an	gle PQR is a right angle then $\cos 45^\circ = \frac{3\sqrt{2}}{6}$		
		Wek	know $\cos 45^\circ = \frac{1}{\sqrt{2}}$	B1	
		And	we have $\frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{(\sqrt{2})^2} = \frac{1}{\sqrt{2}} = \cos 45^\circ$	M1	
		Ther is a r	refore angle <i>PQR</i> must be a right angle so triangle <i>PQR</i> right-angled triangle and Sam is correct	A1	Total 4

18	Number of games won out of 523 must be less than 52.5% $0.525 \times 523 = 274.575$ Must be whole number so greatest = 274 Number of games won out of 543 must be at least 52.5% $0.525 \times 543 = 285.075$	M1 A1			
	Must be whole number so least = 286 Smallest number won = 286 – 274 = 12 games	M1 A1	Total 4		
19	Volume of cake = $\frac{1}{3} \times \pi \times 8^2 \times 20 = \frac{1280}{3}\pi$				
	Volume of one piece = $\frac{1}{2} \times \frac{1280}{3}\pi = \frac{640}{3}\pi$	M1			
	By similar triangles $\frac{r}{h} = \frac{8}{20}$	M1			
	Hence $r = \frac{2}{5}h$				
	Volume of top piece = $\frac{1}{3} \times \pi \times (\frac{2}{5}h)^2 \times h = \frac{640}{3}\pi$				
	$\frac{1}{25}h^3 = 640$				
	$h^3 = \frac{25}{4} \times 640 = 4000$				
	<i>h</i> = ∛4000 = 15.874 Height above base = 20 – 15.874 = 4.125 = 4.1 cm (1dp)	M1 A1			
	[Quick method: From whole to top half, volume scale factor = 0.5 so length scale factor = $\sqrt[3]{0.5}$ = 0.7937		-		
	so height above base = 20 – 0.7937 × 20 = 4.1]		l otal 4		
20	P(1 st is red) = $\frac{x}{x+2x} = \frac{x}{3x} = \frac{1}{3}$ If 1 st is red, there are now (x + 4) red and x blue in box Q				
	P(2 nd is red given 1 st is red) = $\frac{x+4}{2x+4}$	M1			
	P(both are red) = $\frac{1}{3} \times \frac{x+4}{2x+4} = \frac{1}{4}$ 4(x+4) = 3(2x+4) 4x + 16 = 6x + 12	M1			
	4 = 2x x = 2	A1			
	So P has 2 red and 4 blue and Q has 5 red and 2 blue				
	$P(1^{st} \text{ is blue}) = \frac{\tau}{6} = \frac{\tau}{3}$				
	If 1^{st} is blue there are now 5 red and 3 blue in box Q	N 4 4			
	$P(2^{-1} \text{ is blue given } 1^{-1} \text{ is blue}) = \frac{1}{8}$	N11			
	P(both are blue) = $\frac{1}{3} \times \frac{3}{8} = \frac{1}{8} = \frac{1}{4}$	A1	Total 5		

21	Let short side of rectangle be x cm So side of equilateral triangle = $2x$ cm Let height of equilateral triangle = h cm						
	Using Pythagoras' on half c $x^{2} + h^{2}$ $x^{2} + h^{2}$ $h^{2} = 3x$	M1					
	$h = x \sqrt{1}$	A1					
	Perimeter of rectangle = $2(x)$						
	So, $2(x + x)$	$\sqrt{3} = 20$	M1				
	$\mathbf{x} + \mathbf{x} \sqrt{\mathbf{x}}$	$ \begin{array}{c} x + x \sqrt{3} = 10 \\ x(1 + \sqrt{3}) = 10 \\ 10 \end{array} $					
	X (1 · · ·						
	$x = \frac{1}{1}$	$+\sqrt{3}$	M1				
	Perimeter of equilateral tria						
		$=\frac{60}{1+\sqrt{2}}=21.961$					
		= 22.0 cm (3sf)	A1	Total 5			
22	OA and AB are adjacent sid Line through A and B has e	tes of a square and therefore perpendicular quation $y = -3x + 20$					
	Comparing with $y = mx + c$	M1					
	Gradient of OA = $\frac{-1}{-3} = \frac{1}{3}$						
	OA passes through origin so equation is $y = \frac{1}{3}x$						
	A is intersect of lines so	$\frac{1}{3}x = 20 - 3x$	M1				
		x = 60 - 9x 10x = 60					
		x = 6	A1				
	When $x = 6$, $y = \frac{1}{2} \times 6 = 2$						
	OC will be OA rotated 90° s	A1					
	[Other correct answer is (2,	-6)]		Total 5			

TOTAL FOR PAPER: 80 MARKS