Mathematics

Paper 2 (Calculator)

Foundation Tier

Churchill Paper 2E - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence
$2=5 \times 6+8=30+8=38$
19
$3 \quad \frac{3}{4} \mathrm{~m}=0.75 \mathrm{~m}=75 \mathrm{~cm}=750 \mathrm{~mm}$
7.5 750
75000
B1
Total 1
$4 \quad=p^{2}+p^{2}=2 p^{2}$
$2 p^{2} \quad 3 p^{2} \quad 2 p^{3} \quad p^{4}$
B1 Total 1

5 (a) 10% of $220=220 \div 10=£ 22$

$$
70 \% \text { of } 220=7 \times 22=£ 154
$$

B1
(b) $\frac{1}{3}$ of $£ 4.20=£ 4.20 \div 3=£ 1.40$
$£ 4.20+£ 1.40=£ 5.60$
A1
(c) Decrease $=400-310=£ 90$

$$
\begin{aligned}
\% \text { decrease } & =\frac{90}{400} \times 100 \% & & \text { M1 } \\
& =\frac{90}{4} \%=\frac{45}{2} \%=22.5 \% & & \text { A1 }
\end{aligned}
$$

A1 Total 5

6 (a) $(3,2)$
B1
(b)

(c) $(6,-2)$

M1 A1
(d) $(2,0)$

B1 Total 5

7 (a) $=30 \times 2.54=76.2 \mathrm{~cm}$
(b) e.g.

(c) ≈ 23 inches
[Calculation gives 22.8346 ... so e.g. 22.83 is $B 0]$
Total 5
$8 \quad$ (a) $\quad \frac{3}{12} \quad\left[=\frac{1}{4}\right]$ B1
(b) $\frac{6}{12} \quad\left[=\frac{1}{2}\right]$ B1
(c) $\frac{4}{12} \quad\left[=\frac{1}{3}\right]$

B1
(d) $\frac{9}{12} \quad\left[=\frac{3}{4}\right]$

B1 Total 4

9 (a) $142 \div 2=£ 71$
M1
$71 \div 5=£ 14.20$
M1 A1
(b) 1.25 litres $=1250 \mathrm{ml}$
$1250-400=850 \mathrm{ml}$ poured out M1
$850 \div 3=283.33 \ldots$ M1
283 ml (3sf) was poured into each glass A1 Total 6

10 (a) $\approx 300-260=40$
(b)

≈ 12 teachers (from line of best fit, nearest whole number)
A1 Total 3

11 (a) $180-2 \times 31=180-62=118^{\circ}$
$a=360-118=242^{\circ}$
$62^{\circ} \quad 118^{\circ} \quad 222^{\circ}$
B1
(b) External angle of regular octagon $=360 \div 8=45^{\circ}$

External angle of regular hexagon $=360 \div 6=60^{\circ}$
$b=45+60=105^{\circ}$
95°
111°
115°
B1 Total 2

12 (a) Ratio $=4: 8=1: 2$
B1
(b) $3+4+8=15$
$300 \div 15=£ 20$
$3 \times £ 20=£ 60$
M1
A1 Total 3

1311 am to $4.30 \mathrm{pm}=1+4.5=5.5$ hours
$5 \times 5.5=27.5$ hours M1
$27.5 \times £ 11.60=£ 319$ for Monday to Friday
$379.90-319=£ 60.90$ for Saturday
M1
$1.5 \times £ 11.60=£ 17.40$ per hour on Saturday
M1
$60.90 \div 17.40=3.5$ hours on Saturday
10 am to 12 noon $=2$ hours
Younis finished at 1.30 pm on Saturday
A1 Total 4

14 e.g. 20% off is $\frac{1}{5}$ off
Buy 2 get 1 half price means he would pay $2 \frac{1}{2}$ times the usual price for 3 packets
The fraction of full price he pays is $\frac{2 \frac{1}{2}}{3}=\frac{5}{6}$
The discount is $\frac{1}{6}$ M1
$\frac{1}{5}$ is larger than $\frac{1}{6}$ so 20% off is better value A1
[Can get full marks with an assumed price and suitable words]
Total 3

15 e.g. If the number is $18, \times$ by 2 will increase it by 18 which is too much Likewise any number bigger than 18 will increase by more than 18 when it is multiplied by 2
So, the number is 17 or less
B1
If the number is $15, \div$ by 3 gives 5 so it has decreased by 10 M1
Any number less than 15 will decrease by less than 10
If the number is $16, \div$ by 3 gives $5 \frac{1}{3}$ so it has decreased by $10 \frac{2}{3}$
If the number is $17, \div$ by 3 gives $5 \frac{2}{3}$ so it has decreased by $11 \frac{1}{3} \quad$ M1
So the number is 17 or more
Putting them together, the number is 17
A1
[Setting up inequalities is obviously fine!]

16 (a) The mean
e.g. There is no prize of 50 p so that cannot be the mode. With 5 values, the median will be the $3^{\text {rd }}$ value (in order) and as there is no prize of 50 p the median cannot be 50 p.
(b) e.g. He has assumed the ball is equally likely to go through each of the gates.
(c) e.g. To go through the outer gates the ball has to move quite a bit to the side. Hence the ball is less likely to go through the outer gates and his assumption is not reasonable.
The outer gates win the bigger prizes so the true mean prize will be considerably less (and almost certainly less than the 40 p it costs for a roll!)

```
Total 5
```

17
(a) $=x^{2}-x-5 x+5$
$=x^{2}-6 x+5$
$x^{2}-6 x+5 \quad x^{2}-6 x-5 \quad x^{2}-4 x+5 \quad x^{2}-5 x+6$
(b) $(x-1)(x+10) \quad(x+2)(x-5)$
$(x-2)(x-5) \quad(x-2)(x+5)$
B1
Total 2

18 e.g.

$19 \quad$ (a)

(b) Rotation by 90° clockwise about the point $(0,0)$

M2 A1 Total 5

20 A kite has two pairs of equal sides
Here:

$$
\begin{array}{ll}
2 p+2=3 p-3 & \text { M1 } \\
2 p+5=3 p & \text { A1 } \\
5=p &
\end{array}
$$

So, $2 p+2=2 \times 5+2=12$
Each half of kite is a right-angled triangle
Base $=2 p+2=12 \mathrm{~cm}$ and perpendicular height $=p=5 \mathrm{~cm}$
Area of half of kite $=\frac{1}{2} \times 5 \times 12=30 \mathrm{~cm}^{2}$
Area of kite $=2 \times 30=60 \mathrm{~cm}^{2}$

21 (a) Pythagoras' with c = hypotenuse

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}+8.6^{2}=9.7^{2} \\
& a^{2}+73.96=94.09 \\
& a^{2}=94.09-73.96=20.13 \\
& \begin{aligned}
& a=\sqrt{20.13}=4.4866 \ldots \\
&=4.49 \mathrm{~cm}(3 \mathrm{sf})
\end{aligned}
\end{aligned}
$$

M1
A1
(b) $\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$

A1 Total 4

22

$$
\begin{array}{lrl}
x+y=1.5 & (1) & \\
4 x-3 y=13 & (2) & \\
3 x+3 y=4.5 & \text { (3) } & \\
7 x \quad=17.5 & \mathrm{M} 1 \\
x=17.5 \div 7=2.5 & \mathrm{M} 1 \\
2.5+y=1.5 & \mathrm{~A} 1
\end{array}
$$

$3 \times(1)$

Sub (1)
So $x=2.5, y=-1$
Total 4

23 (a) $y \propto \frac{1}{x}$

$$
y=\frac{k}{x}
$$

When $x=240, y=2$ so $\quad 2=\frac{k}{240} \quad$ M1

$$
k=240 \times 2=480
$$

Hence, $y=\frac{480}{x}$

A1

(b) $y=\frac{480}{30}$
$y=\frac{48}{3}=16$ as required A1

$$
\begin{aligned}
& \sin b=\frac{6.7}{8.1}=0.82716 \ldots \\
& \text { M1 } \\
& b=\sin ^{-1} 0.82716 \ldots=55.808 \ldots \\
& =55.8^{\circ} \text { (3sf) }
\end{aligned}
$$

