Method marks (M) are awarded for a correct method which could lead to a correct answer.

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied.

(B) marks are awarded independent of method.
Churchill Paper 1E Marking Guide – AQA Higher Tier

1
3 \times 1.2 = 3.6
1.6 + 2 = 0.8
3.6 + 0.8 = 4.4

\[\frac{3}{5} \div 2 = \frac{27}{45} \div \frac{10}{45} = \frac{17}{45} \]

\[\frac{1}{4} \quad \frac{1}{45} \quad \frac{6}{45} \quad \frac{17}{45} \]

\[4.4 \quad 4.2 \quad 3.8 \quad 2.6 \] B1 Total 1

2
\[(3, 1) \quad (3, -1) \quad (-3, 1) \quad (-3, -1) \] B1 Total 1

4
e.g. 7.9 is just 7.9 (!)
\[\sqrt{65} \] is a bit bigger than \[\sqrt{64} \] so a bit bigger than 8
\[(2.1)^3 \] is a bit bigger than \[2^3 \] so a bit bigger than 8

\[\frac{1}{0.1} = 10 \] and as 0.09 is less than 0.1, \[\frac{1}{0.09} > 10 \] so is the largest

\[\sqrt{65} \quad \frac{1}{0.09} \quad 7.9 \quad (2.1)^3 \] B1 Total 1

5
e.g.
\[C \quad S \quad V \]

5 : 4
3 : 2

\[5 : 4 = 15 : 12 \]
\[3 : 2 = 12 : 8 \] M1

Giving

\[C \quad S \quad V \]

15 : 12 : 8 Choc to Vanilla = 15 : 8 M1 A1 Total 3

6
e.g. Total cost = 140 + 315 = £455
Total income = 12 \times 62
= 620 + 124 = £744 B1

Money raised = 744 - 455 = £289
Money raised per person = £289 \div 62:

\[
\begin{array}{c|cccc}
62 & 2 & 8 & 9 & 0 \\
\hline
62 & 4 & 1 & 0 \\
3 & 7 & 2 \\
3 & 8 & 0 \\
3 & 7 & 2 \\
\hline
8 & 0
\end{array}
\]

\[4.66 \text{ (to the nearest penny)} \] A1 Total 4
7 (a) In the 5th week he will have added 10 minutes on four times
1 hour + 4 × 10 minutes = 1 hour 40 minutes
M1
A1
(b) 2 hours has been added on to the original time
2 hours = 120 minutes = 12 × 10 minutes
M1
He spends 3 hours in the 13th week of the year
A1
(c) In 52nd week he’d spend 1 hour + 51 × 10 minutes
51 × 10 minutes = 510 minutes
510 minutes = 510 ÷ 60 hours = 8.5 hours
M1
In 52nd week he’d spend 1 + 8.5 = 9.5 hours on the treadmill
There are 24 × 7 = 168 hours in a week
M1
Naz is wrong, 9.5 hours is less than a tenth of the hours in a week
A1
Total 7

8 (a) \[
\frac{1}{2} x + 9 > 3x - 6 \\
\frac{1}{2} x + 15 > 3x \\
x + 30 > 6x \\
30 > 5x \\
x < 6
\]
M1
A1
(b) B1

(c) By inspection, \(x \) can be +ve or -ve but it's magnitude must be larger than or equal to \(\sqrt{16} = 4 \)
\[
x \leq -4 \quad \text{or} \quad x \geq 4
\]
M1 A1
[OR: \(x^2 - 16 \geq 0 \), \((x + 4)(x - 4) \geq 0 \), c.v. = ±4

\text{graph or table etc. leading to above answer}]
Total 5

9 e.g. \[
\sqrt{26} + 1.98 = \frac{5 + 2}{36 - 8} = \frac{7}{28} = \frac{1}{4}
\]

\[
-8 \quad -3.5 \quad 0.25 \quad 1.4
\]
B1 Total 1

10 \[
1 - \frac{3}{8} = \frac{5}{8} \text{ of income not on rent}
\]
\[
1 - \frac{6}{11} = \frac{5}{11} \text{ of rest of income is saved}
\]
M1
Fraction saved = \(\frac{5}{11} \times \frac{5}{8} = \frac{25}{88} \)
M1 A1 Total 3
11 (a) \(\frac{1}{7} \) of 140 = 20
Let the no. of non-fiction paperbacks be \(x \)
The number of fiction hardbacks must be 140 – (80 + 20 + \(x \))
= 40 – \(x \)
So \(80 + (40 - x) = 80 + x + 10 \)
120 – \(x \) = 90 + \(x \)
30 = 2\(x \)
\(x = 15 \) \hspace{1cm} [Intuitive methods are easier and fine!]

\[
\begin{array}{ccc}
& P & F \\
15 & 20 & \text{(20 and 80)} \hspace{1cm} \\
80 & & \\
25 & & \text{(15 and 25)} \\
\end{array}
\]

(b) \(\frac{20}{45} \) \hspace{1cm} \(= \frac{4}{9} \) \hspace{1cm} B1

12 (a) \(f(11) = \frac{11 + 1}{2} = 6 \) \hspace{1cm} B1

(b) \(\frac{3}{x} = 9 \)
\(3 = 9x \)
\(x = \frac{3}{9} = \frac{1}{3} \) \hspace{1cm} A1

(c) \(f\left(\frac{1}{2}\right) = \frac{\frac{1}{2} + 1}{2} = \frac{\frac{3}{2}}{2} = \frac{3}{4} \)
\(g\left(\frac{1}{2}\right) = g\left(\frac{3}{4}\right) = \frac{3}{3} = \frac{4}{3} = 4 \) \hspace{1cm} M1 A1

13 (a) 4 hours = 4 \times 60 \text{ minutes} = 6 \times 40 \text{ minutes}
Doubling 6 times = \(\times 2^6 = \times 64 \)
64 \times \(\frac{3}{4} \) million = 48 million
12 million 24 million 48 million 96 million \hspace{1cm} B1

(b) Each year the previous year's value is multiplied by 0.63
So new value = 63% of previous value
Annual % decrease = 100 – 63 = 37%
14 \((a) \quad = (93 \times 10^6) + (8 \times 10^6) \)
\[= 101 \times 10^6 \quad \text{M1} \]
\[= 1.01 \times 10^8 \quad \text{A1} \]

\((b) \quad = \frac{4.2}{1.4} \times \frac{10^4}{10^8} \)
\[= 3 \times 10^{10} \quad \text{M1 A1 Total 4} \]

15 Tangent perpendicular to radius:
Angle \(OAP = angle \ OCP = 90^\circ\)

Angles in quadrilateral total 360\(^\circ\):
\[Angle \ AOC = 360 - (90 + 90 + 36) = 360 - 216 = 144^\circ \quad \text{M1} \]

Angles around a point total 360\(^\circ\):
Reflex angle \(AOC = 360 - 144 = 216^\circ \quad \text{M1} \)

Angle subtended at centre is twice angle subtended on circumference:
\[Angle \ ABC = 216 \div 2 = 108^\circ \quad \text{A1 Total 3} \]

16 e.g. Let the average speed of both drivers be \(v\) mph

Speed = \(\frac{\text{distance}}{\text{time}}\) so time = \(\frac{\text{distance}}{\text{speed}}\)

For Gethin, time = \(\frac{85}{v}\) and for Bella, time = \(\frac{75}{v}\) \(\text{M1} \)

Gethin's journey takes 12 minutes longer = \(\frac{1}{5}\) hour longer

So,
\[\frac{85}{v} = \frac{75}{v} + \frac{1}{5} \quad \text{M1} \]
\[85 = 75 + \frac{1}{5}v \]
\[\frac{1}{5}v = 10 \quad \text{M1} \]
\[v = 50 \quad \text{A1} \]

Bella's journey time = \(\frac{75}{50} = 1.5\) hours = 1 hour 30 mins
They arrive at 10.42 am

[Note, quick method: Gethin must have covered 10 miles in 12 minutes] \(\text{Total 4}\)
(a) Number of sales (S)	Number of days	Class width	Frequency density
10 ≤ S < 30 | 5 | 20 | 0.25
30 ≤ S < 40 | 8 | 10 | 0.8
40 ≤ S < 45 | 9 | 5 | 1.8
45 ≤ S < 50 | 6 | 5 | 1.2
50 ≤ S < 60 | 2 | 10 | 0.2

(b) e.g. The advert has been successful as there is a higher frequency density for more than 40 sales and a lower frequency density for less than 40 sales meaning that sales have increased.

(c) \[5 \times 0.6 + 5 \times 2.0 + 5 \times 1.4 + 10 \times 0.4 = 3 + 10 + 7 + 4 = 24 \text{ days} \]

(d) e.g. It assumed that the days in the 30 to 40 class were split evenly with half being below 35 and half being 35 or over.
18. Triangle BDE is equilateral so each internal angle = 60°

Angle $CBD = \text{angle } BDE = 60^\circ$ (alternate angles)

\[
\tan 60^\circ = \frac{CD}{BD} \quad \text{so} \quad \sqrt{3} = \frac{CD}{8} \\
CD = 8\sqrt{3} \text{ cm} \\
\cos 60^\circ = \frac{BD}{BC} \quad \text{so} \quad \frac{1}{2} = \frac{8}{BC} \\
\frac{1}{2} BC = 8 \Rightarrow BC = 16 \text{ cm} \\
AB = 21 - 16 = 5 \text{ cm} \\
\text{Angle } ABE = \text{angle } BED = 60^\circ \text{ (alternate angles)} \\
AE^2 = AB^2 + BE^2 - 2 \times AB \times BE \times \cos 60^\circ \\
AE^2 = 5^2 + 8^2 - 2 \times 5 \times 8 \times \frac{1}{2} \\
AE^2 = 25 + 64 - 40 = 49 \\
AE = 7 \text{ cm (length so positive)} \\
\text{Perimeter} = 21 + 8\sqrt{3} + 8 + 7 = (36 + 8\sqrt{3}) \text{ cm}

19. Triangle ABC is similar to triangle AMN

Length scale factor = $\frac{15}{6} = \frac{5}{2}$

Area scale factor = $\left(\frac{5}{2}\right)^2 = \frac{25}{4}$

Area of triangle AMN to area of triangle $ABC = 4 : 25$

Area of triangle AMN to area of quadrilateral $BCNM = 4 : 21$

20. (a) $27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^{\frac{2}{1}} = 3^2 = 9$

(b) $25^{\frac{1}{3}} = (5^2)^{\frac{1}{3}} = 5^{\frac{2}{3}}$

\[
125^{\frac{1}{3}} = (\text{5}^3)^{\frac{1}{3}} = 5^{-1} \\
\text{So, } \quad 5^{2x} = \frac{7}{2} \times 5^{-1} \\
5^{2x} = \frac{7}{2} \times 1 = 5^2 \\
2x = \frac{5}{2} \\
x = \frac{5}{4}
\]
21 e.g. Regular hexagon so length of $PQ = \text{length of } ST$
PS is common to both triangles so length is the same
B1
Regular hexagon so opposite sides are parallel
Therefore angles QPS and TSP are alternate and equal
M1
We have two pairs of equal sides and the angle between them
is also equal, hence congruent by SAS
A1 Total 3

22 Rearrange:
$3x + 2y = 26$
$2y = 26 - 3x$
$y = 13 - \frac{3}{2}x$
Gradient of tangent $= -\frac{3}{2}$
M1
Gradient of radius perpendicular to tangent $= \frac{-1}{-\frac{3}{2}} = \frac{2}{3}$
M1
Radius passes through origin so equation is
$y = \frac{2}{3}x$
Sub $y = \frac{2}{3}x$ into $3x + 2y = 26$ to find point on circle:
$3x + 2\left(\frac{2}{3}x\right) = 26$
$9x + 4x = 78$
$13x = 78$
$x = 6$
When $x = 6$, $y = \frac{2}{3} \times 6 = 4$
Hence $(6, 4)$ is point where tangent touches circle
Let radius be r:
$r^2 = 6^2 + 4^2$
$r^2 = 36 + 16 = 52$
Equation of circle is
$x^2 + y^2 = r^2$
So,
$x^2 + y^2 = 52$
A1 Total 5

23 $(4x + a)(x - 2) = 4x^2 - 8x + ax - 2a$
$(2x + 1)^2 = 4x^2 + 4x + 1$
So,
$4x^2 - 8x + ax - 2a \equiv 4x^2 + 4x + 1 + b$
Hence:
$-8 + a = 4$
$a = 12$
M1
And:
$-2a = 1 + b$
$-24 = 1 + b$
$b = -25$
A1 Total 5

TOTAL FOR PAPER: 80 MARKS