For AQA

Mathematics

Paper 1 (Non-Calculator)

Foundation Tier

Churchill Paper 1E – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Written by Shaun Armstrong

Only to be copied for use in a single school or college having purchased a licence

Churchill Paper 1E Marking Guide - AQA Foundation Tier

- 1 4
- 5
- 8 16

- В1
- Total 1

- 2 -14.4
- -7.2
- -1.6
- 1.6

- B1
- Total 1

- $= \frac{12}{60} = \frac{2}{10} = \frac{1}{5}$ 3
 - 3 25
- <u>1</u>
- <u>1</u> 5

- В1
- Total 1

- 10 + 12 + 12 + 18 + 18 = 704 $70 \div 5 = 14$
 - 12
- 13
- 13.5

 $\frac{1}{4}$

14

- B1
- Total 1

Total 5

5 (a) $= 18 \div 3 = 6$ **B1**

10% of $60 = 60 \div 10 = 6$ (b) 5% of $60 = 6 \div 2 = 3$

M1 A1

- $\frac{1}{5}$ of 7.5 = 7.5 ÷ 5 e.g. 5 ÷ 5 = 1 (c)
 - - $2.5 \div 5 = 0.5$
 - $7.5 \div 5 = 1.5$

M1

 $\frac{3}{5}$ of 7.5 = 3 × 1.5 = 4.5

Α1

- 6 $360 \div 40 = 9$
 - So 9° represents 1 person
 - Frequencies:
- 19
- 12 171° 27° 108° 54°

M1

M1

M1 A1

Total 4

$$5x + 12$$
 A1 Total 6

12 e.g. C S V 5 : 4 5:4 = 15:12 3 : 2 3:2 = 12:8 M1

Giving
C S V

13 (a) Trapezium B1

15 : 12 : 8

(b) e.g. M1 A1

Choc to Vanilla = 15:8

Total 3

M1 A1 Total 3

- **14** $\frac{3}{5} \frac{2}{9} = \frac{27}{45} \frac{10}{45} = \frac{17}{45}$
- <u>1</u> 45
- 17

B1

M1

- Fraction of beads in bag that are green = $\frac{5}{8} \times \frac{2}{5}$ 15 M1 $=\frac{10}{40}=\frac{1}{4}$
 - Fraction of beads in bag that are yellow = $1 (\frac{2}{5} + \frac{1}{4})$
 - $= 1 (\frac{8}{20} + \frac{5}{20})$ $= 1 \frac{13}{20} = \frac{7}{20}$
 - M1
 - Yellow beads as fraction of red beads = $\frac{\left(\frac{7}{20}\right)}{\left(\frac{2}{2}\right)} = \frac{7}{20} \times \frac{5}{2} = \frac{35}{40}$ [= $\frac{7}{8}$] **A1**

[Can get full marks with assumed number of beads in bag]

Total 4

Total 4

Total 1

- Volume of cube = I^3 = 64 16
 - Side of cube = $\sqrt[3]{64}$ = 4 cm
 - Length of rod = $9 \times 4 = 36$ cm
 - Side of XS of rod = $4 \div 3 = 1\frac{1}{3}$ cm
 - Dimensions of rod are $1\frac{1}{3}$ by $1\frac{1}{3}$ by 36 cm [or 1.33 cm (3sf)]

[Shown on diagram]

M1

Α1

M1

A1

M1

M1

- 17 60 - 22 = 38(a)
 - 53 38 = 15
 - 22 + 38 + 15 = 75
 - 80 75 = 5

A1

В1

B1

M1

(b) $=\frac{15}{20}$ $[=\frac{3}{4}]$

- **B1** Total 4
- 18 e.g. 8 is the last digit of one number being multiplied and 3 is the (a) last digit of the other number.
 - As $8 \times 3 = 24$, 4 must be the last digit of the answer.
 - The last digit of the given answer is 1 so it must be wrong.
 - (b) $4 \times 6 = 24$. 13804 ends in a 4 so could be correct $7 \times 8 = 56$, 18632 ends in a 2 so can't be correct $9 \times 5 = 45$. 49375 ends in a 5 so could be correct
 - $47 \times 388 = 18632$ must be wrong

A1 Total 4

19	(a)	In the 5 th week he will have added 10 minutes on four times 1 hour + 4 × 10 minutes = 1 hour 40 minutes	M1 A1			
	(b)	2 hours has been added on to the original time 2 hours = 120 minutes = 12 × 10 minutes He spends 3 hours in the 13 th week of the year	M1 A1			
	(c)	In 52 nd week he'd spend 1 hour + 51 × 10 minutes 51 × 10 minutes = 510 minutes 510 minutes = 510 ÷ 60 hours = 8.5 hours	M1			
		In 52 nd week he'd spend 1 + 8.5 = 9.5 hours on the treadmill There are 24 × 7 = 168 hours in a week Naz is wrong, 9.5 hours is less than a tenth of the hours in a week	M1 A1	Total 7		
20	$1 - \frac{3}{8} = \frac{5}{8}$ of income not on rent					
	1 – -	$\frac{6}{11} = \frac{5}{11}$ of rest of income is saved	M1			
	Frac	tion saved = $\frac{5}{11} \times \frac{5}{8} = \frac{25}{88}$	M1 A1	Total 3		
21	(a)	$\frac{1}{2}x + 9 > 3x - 6$ $\frac{1}{2}x + 15 > 3x$				
		x + 30 > 6x	M1			
		30 > 5 <i>x x</i> < 6	A1			
	(b)		B1			
		-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9		Total 3		
22	(a)	e.g. Base = 9 cm^2				
		Sides of 1 st layer = 12 cm ² Top of 1 st layer = 8 cm ²	M1			
		Sides of 2 nd layer = 4 cm ² Top of 2 nd layer = 1 cm ²				
		Total = $9 + 12 + 8 + 4 + 1 = 34 \text{ cm}^2$	A1			
	(b)	e.g. Pressure = $\frac{\text{force}}{\text{area}}$				
	(3)	The weight of the shape is the same so the force is the same The area of contact was 9 cm² but is now 1 cm² The force on 1 cm² is 9 times what is was before				
		The pressure will be 9 times as large Pressure = 9 × 800 = 7200 N/m ²	A1	Total 4		

B1

(b)

Х	-3	-2	-1	0	1	2	3
$x^3 - 4x$	-15	0	3	0	-3	0	15

B1

(c)

Total 4

4 hours = 4×60 minutes = 6×40 minutes 24 (a) Doubling 6 times = $\times 2^6 = \times 64$

 $64 \times \frac{3}{4}$ million = 48 million

12 million

24 million

(48	million

96 million

B1

(b) Each year the previous year's value is multiplied by 0.63 So new value = 63% of previous value Annual % decrease = 100 - 63 = 37%

0.63%

37%

50.4%

63%

B1

Total 2