Mathematics
 Paper 1 (Non-Calculator)

Foundation Tier

Churchill Paper 1E - Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer
Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied
(B) marks are awarded independent of method

Churchill
Maths
Written by Shaun Armstrong
Only to be copied for use in a single school or college having purchased a licence

$8 \quad 16$
B1
Total 1
$2-14.4 \quad-7.2 \quad 1.6 \quad$ B1 \quad Total 1
$3=\frac{12}{60}=\frac{2}{10}=\frac{1}{5}$

B1
Total 1
$4 \quad 10+12+12+18+18=70$
$70 \div 5=14$
12
13
13.5

B1 Total 1

5
(a) $=18 \div 3=6$

B1
(b) 10% of $60=60 \div 10=6$
5% of $60=6 \div 2=3$
M1 A1
(c) $\frac{1}{5}$ of $7.5=7.5 \div 5$
e.g. $5 \div 5=1$
$2.5 \div 5=0.5$
$7.5 \div 5=1.5$
$\frac{3}{5}$ of $7.5=3 \times 1.5=4.5$
M1
A1 Total 5
$6 \quad 360 \div 40=9$
M1
So 9° represents 1 person
$\begin{array}{lllll}\text { Frequencies: } & 19 & 3 & 12 & 6 \\ \text { Angles: } & 171^{\circ} & 27^{\circ} & 108^{\circ} & 54^{\circ}\end{array}$
M1

M1 A1

Total 4
(a) 11
(b) 5
(c) $100^{3}=100 \times 100 \times 100$

$$
=1000000
$$

M1
= one million
[Allow 1 million]
$8 \quad 3 \times 1.2=3.6$
$1.6 \div 2=0.8$
$3.6+0.8=4.4$
$4.4 \quad 4.2$
4.2
3.8
2.6

B1 Total 1

9
(a) $0.3+7 x+2 x+5 x=1$
M1
$14 x=0.7$
$x=0.7 \div 14$
M1
$x=0.05$
A1
(b) e.g. $P($ Yellow $)=5 \times 0.05=0.25$
A probability of 0.3 equates to 12 counters A probability of 0.1 equates to $12 \div 3=4$ counters A probability of 0.25 equates to $4+4+2=10$ counters

M1 A1 Total 6

10 e.g. Titan could have 3 home wins and 3 losses
B1

$$
(3 \times 7)+(3 \times 0)=21+0=21
$$

Need to find if Epsilon could have won less than 3 times
2 home wins $=2 \times 7=14$ points

$$
24-14=10 \text { points which can't be made without a win M1 }
$$

2 away wins $=2 \times 8=16$ points
$24-16=8$ points which can't be made without a win
1 home win and 1 away win $=7+8=15$ points
$24-15=9$ points which is 3 draws
M1
Epsilon could have 1 home win, 1 away win, 3 draws and 1 loss
So Titan could have 3 wins and Epsilon 2 wins
Yes, Unaza could be correct
A1 Total 4

11 (a)

(c)

$5 x+12$
e.g.

C	S	V	
$5:$	4		$5: 4=15: 12$
	$3:$	2	$3: 2=12: 8$

Giving

C	S	V			
15	$:$	12	$:$	\quad	8
:---	\quad Choc to Vanilla $=15: 8$				

M1 A1 Total 3

13 (a) Trapezium
B1
(b) e.g.

M1 A1

Total 3
$14 \quad \frac{3}{5}-\frac{2}{9}=\frac{27}{45}-\frac{10}{45}=\frac{17}{45}$
$-\frac{1}{4} \quad \frac{1}{45}$ $\frac{6}{45}$ $\frac{17}{45}$

15 Fraction of beads in bag that are green $=\frac{5}{8} \times \frac{2}{5}$

$$
=\frac{10}{40}=\frac{1}{4}
$$

Fraction of beads in bag that are yellow $=1-\left(\frac{2}{5}+\frac{1}{4}\right)$

$$
\begin{aligned}
& =1-\left(\frac{8}{20}+\frac{5}{20}\right) \\
& =1-\frac{13}{20}=\frac{7}{20}
\end{aligned}
$$

Yellow beads as fraction of red beads $=\frac{\left(\frac{7}{20}\right)}{\left(\frac{2}{5}\right)}=\frac{7}{20} \times \frac{5}{2}=\frac{35}{40} \quad\left[=\frac{7}{8}\right] \quad$ A1
[Can get full marks with assumed number of beads in bag]

16 Volume of cube $=I^{3}=64$
Side of cube $=\sqrt[3]{64}=4 \mathrm{~cm} \quad$ M1
Length of rod $=9 \times 4=36 \mathrm{~cm} \quad$ A1
Side of $X S$ of $\operatorname{rod}=4 \div 3=1 \frac{1}{3} \mathrm{~cm}$ M1

Dimensions of rod are $1 \frac{1}{3}$ by $1 \frac{1}{3}$ by $36 \mathrm{~cm} \quad[$ or $1.33 \mathrm{~cm}(3 \mathrm{sf})] \quad$ A1
Total 4

17
(a) $60-22=38$
[Shown on diagram]
M1
$53-38=15$
$22+38+15=75$
$80-75=5$

(b) $=\frac{15}{20} \quad\left[=\frac{3}{4}\right]$

Total 4

18 (a) e.g. 8 is the last digit of one number being multiplied and 3 is the last digit of the other number.
As $8 \times 3=24,4$ must be the last digit of the answer.
The last digit of the given answer is 1 so it must be wrong
(b) $4 \times 6=24,13804$ ends in a 4 so could be correct $7 \times 8=56, \quad 18632$ ends in a 2 so can't be correct
$9 \times 5=45,49375$ ends in a 5 so could be correct $47 \times 388=18632$ must be wrong

Total 4

19 (a) In the $5^{\text {th }}$ week he will have added 10 minutes on four times
(b) 2 hours has been added on to the original time 2 hours $=120$ minutes $=12 \times 10$ minutes
(c) In $52^{\text {nd }}$ week he'd spend 1 hour $+51 \times 10$ minutes
51×10 minutes $=510$ minutes
510 minutes $=510 \div 60$ hours $=8.5$ hours
In $52^{\text {nd }}$ week he'd spend $1+8.5=9.5$ hours on the treadmill
There are $24 \times 7=168$ hours in a week
$20 \quad 1-\frac{3}{8}=\frac{5}{8}$ of income not on rent
$1-\frac{6}{11}=\frac{5}{11}$ of rest of income is saved M1
Fraction saved $=\frac{5}{11} \times \frac{5}{8}=\frac{25}{88}$
M1 A1 Total 3

21 (a) $\frac{1}{2} x+9>3 x-6$
$\frac{1}{2} x+15>3 x$
$x+30>6 x \quad$ M1
$30>5 x$
$x<6$ A1

(b) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |

Total 3

22 (a) e.g. Base $=9 \mathrm{~cm}^{2}$
Sides of $1^{\text {st }}$ layer $=12 \mathrm{~cm}^{2}$
Top of $1^{\text {st }}$ layer $=8 \mathrm{~cm}^{2}$
Sides of $2^{\text {nd }}$ layer $=4 \mathrm{~cm}^{2}$
Top of $2^{\text {nd }}$ layer $=1 \mathrm{~cm}^{2}$
Total $=9+12+8+4+1=34 \mathrm{~cm}^{2}$
(b) e.g. Pressure $=\frac{\text { force }}{\text { area }}$

The weight of the shape is the same so the force is the same
The area of contact was $9 \mathrm{~cm}^{2}$ but is now $1 \mathrm{~cm}^{2}$
The force on $1 \mathrm{~cm}^{2}$ is 9 times what is was before The pressure will be 9 times as large
Pressure $=9 \times 800=7200 \mathrm{~N} / \mathrm{m}^{2}$

23 (a)

(b)

x	-3	-2	-1	0	1	2	3
$x^{3}-4 x$	-15	0	3	0	-3	0	15

(c)

24 (a) 4 hours $=4 \times 60$ minutes $=6 \times 40$ minutes
Doubling 6 times $=\times 2^{6}=\times 64$
$64 \times \frac{3}{4}$ million $=48$ million
12 million

B1
(b) Each year the previous year's value is multiplied by 0.63

So new value $=63 \%$ of previous value
Annual \% decrease $=100-63=37 \%$
$0.63 \% \quad 37 \%$ 50.4\% 63%

B1
Total 2

