

AQA Higher Practice Paper

NOT ORDERED BY DIFFICULTY

240 marks' worth of questions that **COULD** come up in papers 2 and 3. Do not revise these topics exclusively – this is not a predicted paper.

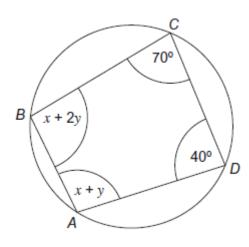
Materials

- For this paper you must have:
 - A calculator
 - Mathematical instruments

Instructions:

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information:


The marks for questions are shown in brackets.

Advice:

In all calculations, show clearly how you work out your answer.

Q1. ABCD is a cyclic quadrilateral. Not drawn accurately. Work out x and y.

X =	degrees
<i>y</i> =	degrees
	(Total 4 marks)

Q2. P is the principal amount. r is the interest rate over a given period. n is the number of times that the interest is compounded. Circle the expression for the total accrued using compound interest.

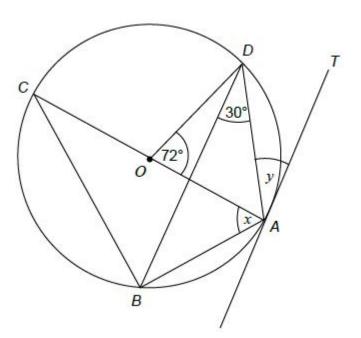
$$P\left(1+\frac{r}{100}\right)^n \qquad P+\left(\frac{r}{100}\right)^r$$

$$P\left(1 + \frac{r}{100}\right)^{n} \qquad P + \left(\frac{r}{100}\right)^{n}$$

$$P\left(1 + \frac{n}{100}\right)^{r} \qquad P\left(1 + \frac{r^{n}}{100}\right)$$

(Total 1 mark)

	Answer	(Total 3
A small toy is made by joining a solid	d cone and a solid hemisphere	e together.
The cone and hemisphere each hav	e radius 6 cm.	C
6 cm	20 cm	
(a) Show that the volume of the to	y is 31211 CM".	


(b) A larger version of the toy is madedimensions twice the size of		
 mass 1.5 kilograms. The toy is made from foam. 		
Work out the density of the foam.		
Give your answer in grams per cubic cer	ntimetre.	
		· · · · · · · · · · · · · · · · · · ·
	Answer	g per cm ³
		(4)
		(Total 8 marks)
An amount of money was invested for 8		
It earned compound interest at 2.5% per	year.	
After 8 years the total value of the invest (a) Tom is trying to work out the total i		
	ntorest samed.	
Tom		
Interest for 8 years =£11696.67 >	0.025 × 8	
interest for 6 years - £11090.07	0.023 × 0	
State what is wrong with Tom's method.		
G		
/b> M/ada and the detail internal arms of		(1)
(b) Work out the total interest earned.		
	Answer £	
		(3)
		(Total 4 marks)

Q5.

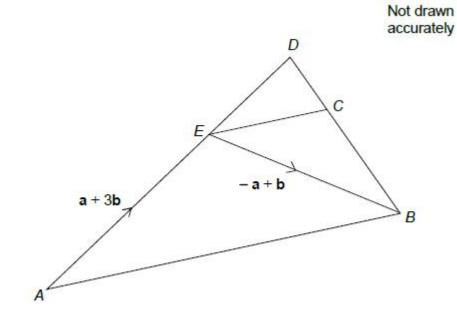
Q6. A, B, C and D are points on a circle, centre O. AC is a diameter of the circle.

AT is a tangent to the circle.

Not drawn accurately

Work out the size of angle <i>x</i> and the size of angle <i>y</i> .				

x = degrees


y = degrees (Total 4 marks)

A, B, C and D are points or Angle ABC = 92° Angle ACB = 38° Angle ACD = 50° Angle CDE = 32°	A Not do accur	
Tick whether each statemer Give a reason for each answ		
Statement	True False	
AC is a diameter		
Reason		
Statement Angle <i>ADC</i> = 88° Reason	True False	
Statement	True False	
ABCD is a trapezium		
Reason		
Statement	True False	
DE is a tangent to the circle		
Reason		

Q8. AED is a straight line.

$$\overrightarrow{AE} = a + 3b$$

$$\vec{EB} = -a + b$$

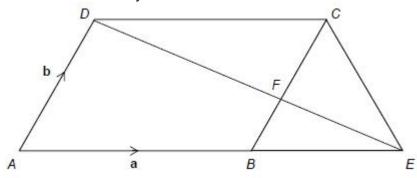
(a) Work out the vector \overrightarrow{AB}

Answer _____ (1)

(3)

and Prove that EC is parallel to AB.

(Total 4 marks)


Q9. ABCD is a parallelogram.

ABE is a straight line and AB : BE = 3 : 2

BC and ED intersect at F.

 $\overrightarrow{AB} = a$ and $\overrightarrow{AD} = b$

Not drawn accurately

Work out *ED* in terms of a and b.

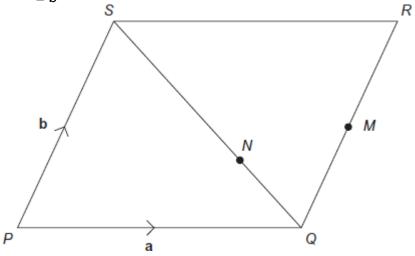
Give your answer in its simplest form.

Answer _____ (3)

Deduce \vec{EF} in terms of a and b. (b)

Answer _____

(Total 5 marks)

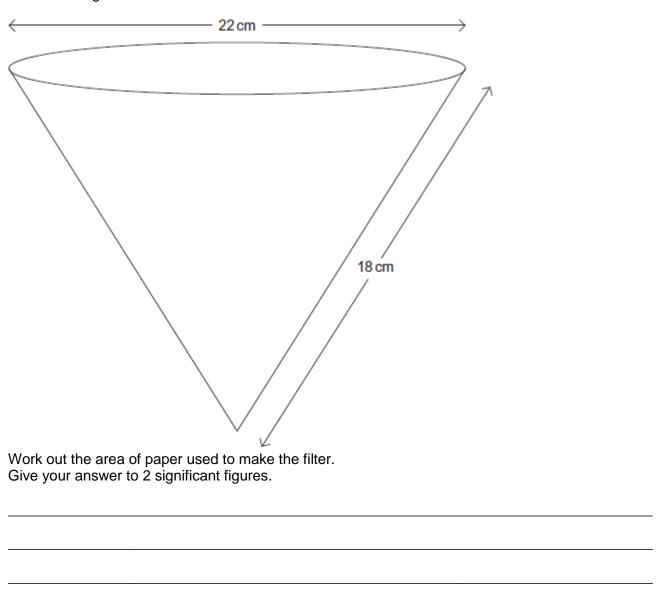

Q10. PQRS is a parallelogram.

M is the midpoint of QR.

QN: NS = 1:2

$$\overrightarrow{PQ} = a$$

$$\overrightarrow{PS} = b$$



Write the vector \overrightarrow{PM} in terms of a and b.

		(1)
h\	Drave that DNM is a straight line	

(b) Prove that *PNM* is a straight line.

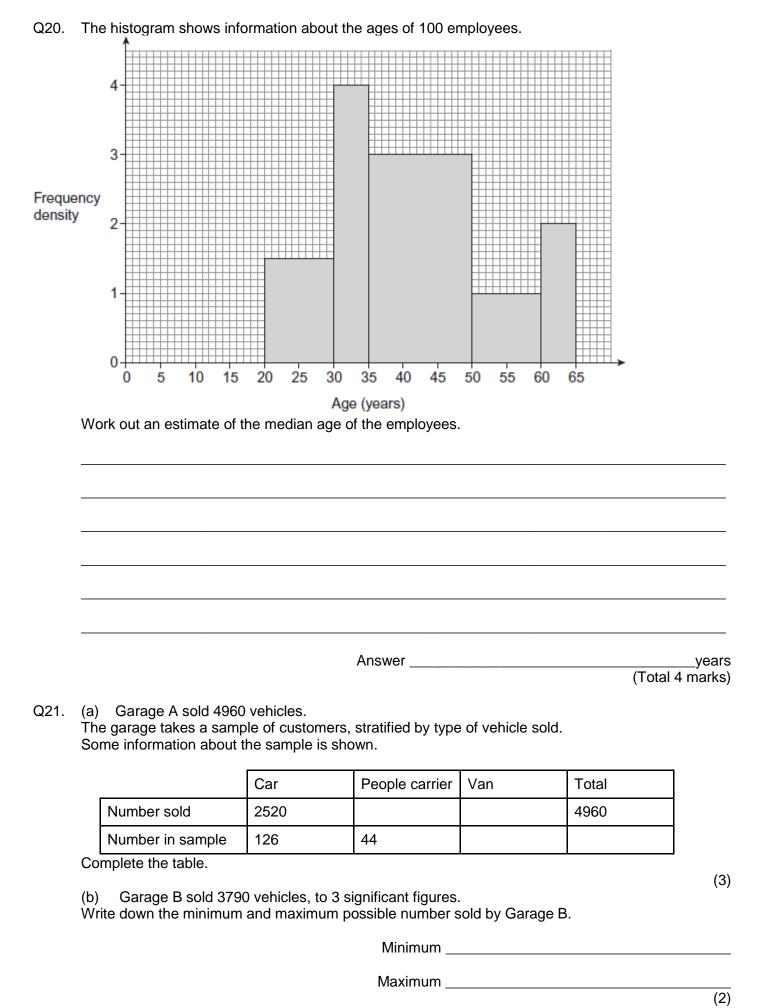
Q11. A paper filter is in the shape of a hollow cone of diameter 22 cm. The slant height of the cone is 18 cm.

Answer	cm ²
	(Total 3 marks)

Q12. Here are two similar solids, A and B. 8 cm В 5 cm The volume of B is 400 cm³ Is the volume of A approximately one quarter of the volume of B? You must show your working.

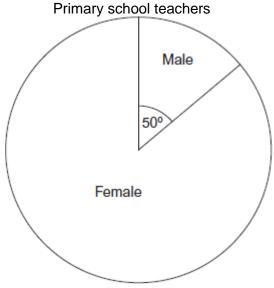
Answer ______(Total 4 marks)

ABCD and AEFG are identical squares. CD = EF = 10 cm Angle BAG = 45° Not drawn accurately
10 cm
Prove that triangles AGD and ABE are congruent.
(Total 4 marks)


Q13.

Q14.	The diagram sho Not drawn accur	ows two pieces ately	of glass.		
		,			
	The pieces are so The area of the so Glass costs £80 Work out the cost	imilar. small piece is 6 per square me	tre.	-75 cm>	
					(Total 5 marks)
Q15.	The area of shap Shape B is simila Circle the calcula	ar to shape A w	vith sides 4 times	s bigger. ape B.	(Total o marko
	36	6 + 4	36 ÷ 4	36 × 4	36 × 4 ²
					(Total 1 mark)

 On Friday, Greg takes part in a long jump competition. He has to jump at least 7.5 metres to qualify for the final on Saturday. He has up to three jumps to qualify. If he jumps at least 7.5 metres he does not jump again on Friday. Each time Greg jumps, the probability he jumps at least 7.5 metres is 0.8 Assume each jump is independent. (a) Complete the tree diagram. 					
(2)					
(2) (Total 4 marks)					


Answer _____(Total 4 marks)

Q18.	Two bags, A and B, contain numbered counters. A counter is chosen at random from each bag.					
	Here are the 8 counters in bag A. 2 3					
	4 4 5					
	The table gives the probabilities of the numbers on the counters in bag B. Number on counter 6 7 8 9					
	Probability 0.2 0.1 0.4 0.3					
	Which bag has the greater probability of choosing an even number? You must show your working.					
	Answer					
Q19.	The probability that Gina goes to the gym on Saturday is 0.9 The probability that Dave goes to the gym on Saturday is 0.6 These probabilities are independent. (a) Calculate the probability that both Gina and Dave go to the gym on Saturday.					
	Answer					
	(b) If Gina goes to the gym on Saturday the probability that she goes on Sunday is 0.2 If Gina does not go to the gym on Saturday the probability that she goes on Sunday is 0.7 Calculate the probability that Gina goes to the gym on exactly one of the two days.					
	Answer					
	(4) (Total 5 marks)					

(Total 5 marks)

Q22. The pie chart shows the proportion of male and female teachers in 15 074 schools.

The mean number of teachers per school is 13.7 Work out the total number of female teachers in these schools. Give your answer to 2 significant figures.

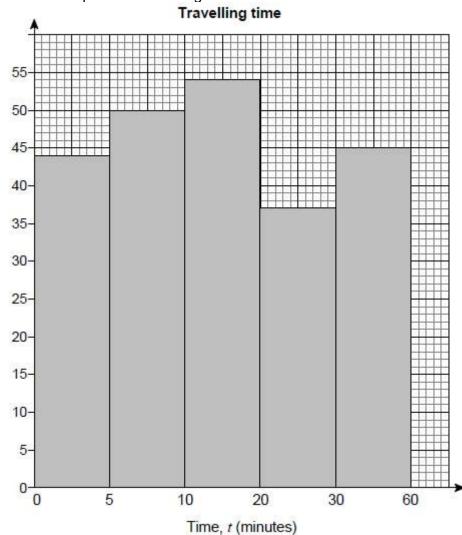
Λ	
Answer	

Q23. Circle the quadratic sequence.

2 8 14 22

2 4 8 16 1 8 27 64

1 4 9 16


(Total 1 mark)

(Total 5 marks)

Q24. Joe asked 230 students how long it took them to travel to school. The results are shown in the table.

Travelling time, t	Number of
(minutes)	students
$0 < t \le 5$	44
5 < <i>t</i> ≤ 10	50
$10 < t \le 20$	54
$20 < t \le 30$	37
$30 < t \le 60$	45

This is Joe's attempt to draw a histogram to show the data.

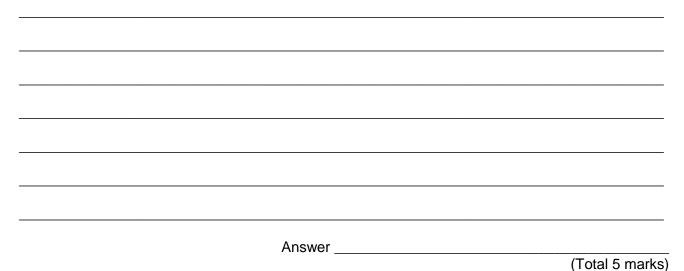
Make two criticisms of his histogram.

Frequency

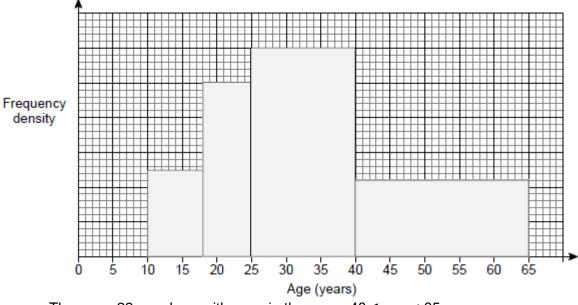
Criticism 1			
Criticism 2			

Childishi 2

Q25. Here is some information about the number of books read by a group of people in 2014 One of the frequencies is missing.


Number of books	Frequency	Midpoint	
0 – 4	16	2	
5 – 9		7	
10 – 14	20	12	
15 – 19	10	17	

Midpoints are used to work out an estimate for the mean number of books read.


The answer is 8.5

Q26.

Work out the missing frequency.

The histogram shows the ages, in years, of members of a chess club.

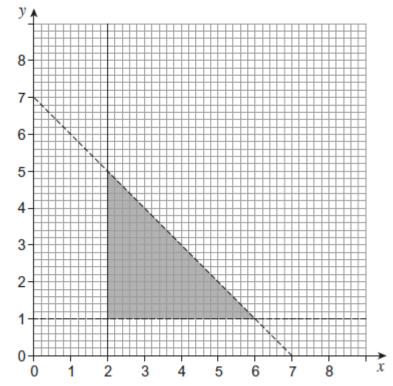


There are 22 members with ages in the range $40 \le age < 65$ Work out the number of members with ages in the range $25 \le age < 40$

Answer __

Q27. The histogram shows information about the times some students revised for a test. The first bar represents students who revised for less than 10 minutes.

Estimate the number of students who revised for less than 45 minutes.


(Total 3 marks)

Q28. (a) The nth term of a sequence is $n^2 + 12n + 27$ By factorising, or otherwise, show that the 20th term can be written as the product of two prime numbers.

(b) The nth term of a different sequence is $n^2 - 6n + 14$ By completing the square, or otherwise, show that every term is positive.

(2)

Use inequalities to describe the shaded region.

-	 	 	

(Total 3 marks)

Q30. (a) Write
$$x^2 + 6x + 10$$
 in the form $(x + a)^2 + b$

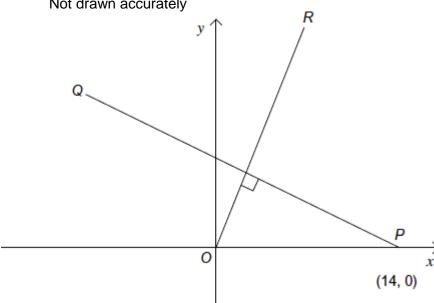
Answer ______(2)

(b) Hence, write down the coordinates of the turning point of the curve $y = x^2 + 6x + 10$

(Total 3 marks)

(b) A sketch of $y = x^2$	Answer + cx + d is shown.	
The turning point is (3, 5)	Not drawn accurately	
O (3, 5) Work out the values of c a	* x	

c =


d =

(3) (Total 5 marks)

	_	39	21 29	11 15
	=	<i>n</i> th term		
(Total 4 n	=		equation $3x +$ line M .	Line <i>M</i> has the e
(Total 4 n	= 3 2		equation $3x + 1$ line M .	Line <i>M</i> has the ending the gradient of line in the distribution of the distribution o
(Total 4 n	3/2	$2y = 7$ 3 $5 - \frac{3}{4}x$	line M . $-\frac{3}{2}$ equation $y = 5$	the gradient of l -3 Line <i>N</i> has the e
(Total 4 n	3/2	$2y = 7$ 3 $5 - \frac{3}{4}x$ Deendicular to line	line M . $-\frac{3}{2}$ equation a line that is perp	the gradient of l -3 Line <i>N</i> has the ethe gradient of a
(Total 4 m	3 2 e N.	$2y = 7$ 3 $5 - \frac{3}{4}x$	line M . $-\frac{3}{2}$ equation $y = 5$	the gradient of l -3 Line <i>N</i> has the e

Q32. Work out an expression for the *n*th term of the quadratic sequence

The gradient of line *OR* is $\frac{7}{4}$ *PQ* is perpendicular to *OR*. Q34. *P* is the point (14, 0). Not drawn accurately

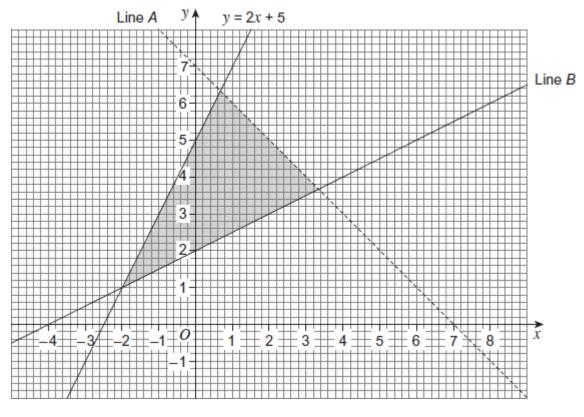
Work out the equation of line PQ.

Q35.

(a)

Solve

Give your answer in the form ax + by = c, where a, b and c are integers.


Answer _____ (Total 4 marks)

 $\frac{2w-3}{6} = 4$

(3)

			$4x^2 - 25 < 0$	(b) Solve	(
					-
					-
					-
					_
					-
					-
		Answer			
			$\frac{1}{y-6} = 5$	(c) Solve	(
					-
					_
					_
					_
		1/ –			-
		y =			
(Total 9 ma			1		
			equation $x^2 + y^2 = \overline{4}$ gth of its radius.	A circle has e Circle the leng	(
	<u>1</u> 2	1/4	<u>1</u> 8	<u>1</u> 16	
(Total 1 m	2	4	8	16	
(. 3.4. 1 11					

Q37. Points in the shaded region satisfy three inequalities. One of the inequalities is $y \le 2x + 5$

(a) Circle the inequality with boundary line A.

$$x + y \ge 7$$
 $x + y < 7$ $x + y \le 7$ $x + y > 7$ (1)

(b) Circle the inequality with boundary line *B*.

$$2y \ge x+4$$
 $2y \le x+4$ $y \ge x+2$ $y \le x+2$ (1) (Total 2 marks)

Q38. Solve 5x - y = 5 $2y - x^2 = 11$

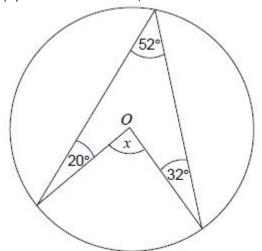
You must show your working. Do not use trial and improvement.

The Venn diagram shows information about a coin collection. ξ = 120 coins in the collection T = coins from the 20th century B = British coins
$\begin{cases} T & B \\ x(x-15) & x & x-2 \end{cases}$
A coin is chosen at random. It is British. Work out the probability that it is from the 20th century.


Answer _____

(Total 5 marks)

Q39.


<i></i>		· · · · · · · · · · · · · · · · · · ·		
(b) Solv	e fg(x) =	gf(<i>x</i>)		
			X =	
				(Total 6 m
A circle ha	s equation length of its	$x^2 + y^2 = 4$ radius.		

Q42. The speed-time graph for a car's journey is shown.

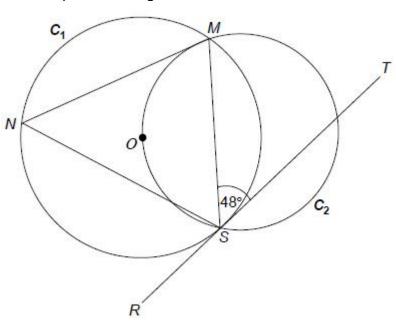
	0	2	4 6	8	10	12	14	16	18	20	22	24		
						ime (s	econo	ls)						
(a) You ——	Estimat must sho			ation at 6	S seco	onds.								
						Answ	/er							 m/s (3
(b) You ——	Estimat must sho			speed (of the	car fo	r the	journe	еу.					
						Answ	er							 m/s (4
(c)	Evaluat	e your	answer	r to part	(b). T	ick a b	OX.							(+
	ur	nderest	timate			exa	ct			(overes	stimate	Э	
Com	ment													

Q43. (a) Here is a circle, centre O.

Not drawn accurately

Work out the size of angle *x*. Circle your answer.

26°


72°

84°

90°

104°

(b) M, N and S are points on circle C_1 RST is a tangent to C_1 Circle C_2 passes through the centre O, S and M of circle C_1

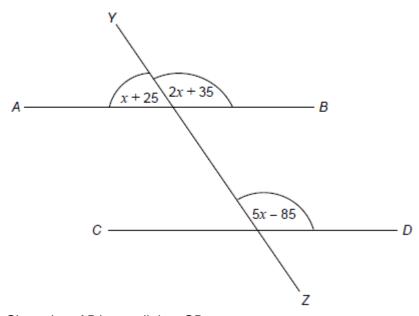
Not drawn accurately

Prove that SM is not a diameter of circle C_2 Give reasons for your answer.

(3)

(1)

	Answer	(Total 3
Prove that	5n - (2n + 3)(n + 1) is always negative.	(
		(Total 3 ı
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 i
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 r
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 i
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 r
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 r
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 r
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 r
Prove that	$3(x+1)(x+7) - (2x+5)^2$ is never positive.	(Total 3 i

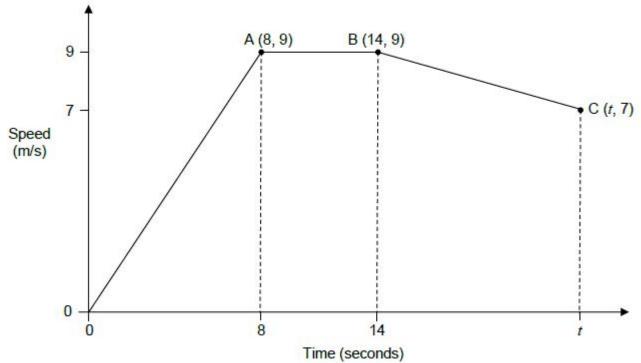

(Total 5 marks)

Q47.	w, x and y : w is 2 less	are three integers.				
	y is 2 more					
	Prove that					
					aw + b	(Total 3 marks)
Q48.	Show that integers.	$\frac{2w+4}{w^2-25} \times \frac{w+5}{w^2+3w+2} \times$	$3(3w^2 - 16 + 5)$	simplifies to	$\frac{dw + b}{cw + d}$	where a, b, c and d are
						 (Total 5 marks)

	Answer	
(a)	Show clearly that $(2x - 3y)(2x + 3y) = 4x^2 - 9y^2$	(Total 4 m
	3 3√2	
(b)	Show clearly that $\frac{3}{\sqrt{2}} \equiv \frac{3\sqrt{2}}{2}$	
	Work out the value of $\left(2\sqrt{3} - \frac{3}{\sqrt{2}}\right)\left(2\sqrt{3} + \frac{3}{\sqrt{2}}\right)$	
(c)	Work out the value of $(2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2})$	

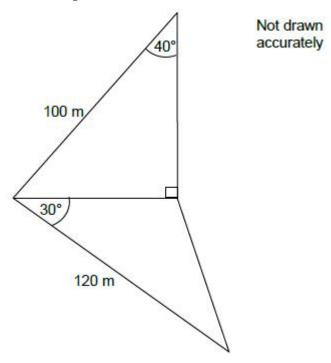
Q49. An empty container has a capacity of 80 000 litres to 1 significant figure.

Q51. AB, CD and YZ are straight lines. All angles are in degrees. Not drawn accurately



Show that AB is parallel t	o <i>CD</i> .		

(Total 4 marks)


Q52.	In this question use 1 pound = 0.4536 kilograms									
	1 inch = 2.54 centimetres. The pressure of a basketball is 7.5 pounds per square inch.									
	Work out this pressure in grams per square centimetre.									
	Answer	g/cm ²								
Q53.	Circle the expression that is equivalent to $\frac{2x^2+1}{x}$ where x is not equal to 0	(Total 4 marks)								
	$2x + 1$ $2x^2 + \frac{1}{2}$ $2x + \frac{1}{2}$ $4x + \frac{1}{2}$									
		(Total 1 mark)								
Q54.	A calculator gives a value of π as 3.14159 An approximation for π is $\sqrt{\frac{40}{3}} - \sqrt{12}$									
	An approximation for π is $\sqrt{\frac{40}{3}} - \sqrt{12}$									
	Show that the value of the approximation is within 0.01% of the calculator value.									
		(Total 4 marks)								

Q55. Here is a sketch of a speed-time graph for part of a journey.

The average speed from 0 to t seconds was 7.2 r Work out the value of t .	m/s.
Answer_	seconds

(Total 5 marks)

Wire fencing is sold in 50-metre rolls. Work out the number of rolls needed.					

Answer ______(Total 6 marks)

	A formula connecting speed (s), distance (d) and time (t) is $s = \frac{d}{t}$ d = 160 to 2 significant figures	
,	t = 7.2 to 2 significant figures Work out the upper and lower bounds for s. Give your answers to 3 significant figures.	
-		
	Upper bound	
	Lower bound	(Total 4 mark
3.	The area of a right-angled, isosceles triangle is 4 cm² Not drawn accurately	
	Work out the perimeter of the triangle in centimetres. Give your answer in the form $a+b\sqrt{c}$, where a , b and c are integers.	
-	Answer	cı (Total 4 mark:

	How many different Circle your answer.	choices of a 3-course	meal are possible?		
	12	23	60	972	(Total 1 mark)
Q60.	Work out $\sqrt[3]{8} \times 5$ Give your answer a				
		Α	nswer		(Total 3 mark)
Q61.		bers is formed by the is sequence of numbers stify your answer.		$a_1 = (a_n)^2 - a_n$	
	(b) Describe the Show working to just	sequence of numbers stify your answer.	when <i>a</i> ₁ = −1		(1)
	(c) Work out the	value of a_2 when a_1	= 1 − √2		(2)
		А	nswer		(2) (Total 5 marks)

Q59. A menu has a choice of 3 starters, 5 main courses and 4 desserts.